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Abstract. Arguments for registering at JINR

synchrophasotron a quantum phenomenon similar

to theoretically predicted, but still unobserved ex-

perimentally, Hawking effect are given. Here an

analogue of the Hawking radiation is a general-

ized coherent state corresponding to the dynamical

symmetry group SU(1, 1), which describes Bose-

Einstein condensate of pions in a strong external

field.

Introduction. Recently a proposal of QCD inves-

tigation at high density and low temperature, com-

plementary to the high-energy heavy nuclear colli-

sions, was suggested [1, 2]. The proposal is based on

the fact that a large number of nucleons in the in-

teraction region is not necessary for the phase tran-

sition to occur, and only a change of the vacuum

state should be initiated in a nuclear system, which

may contain a small number of nucleons. Here I re-

port on a possible observation of a phenomenon of

this type at JINR, relying on papers [3, 4, 5, 6, 7].

In [4, 5] quasi-resonant peaks in two-proton effec-

tive mass distribution from reactions np→ppπ−mπ0

and np→ pp π+π−π−mπ0, m = 0, 1 were observed.

Recently it has been shown [6, 7] that dibaryons

with nearly the same masses were detected in np

system from reaction D+D→X+D in a more ear-

lier paper by A.M. Baldin et al. [3]. This fact in-

creases significantly the reliability of existence of the

dibaryons like those and worths special studying.

With the assumption that some of dibaryons were

unrecognized in the experiments [4, 5], it is possible

to approximate the mass spectrum within rather

small, at 1 – 2 MeV/c2 level, experimental errors

by the formula,

Mn = MNN + 10.08 n, (1)

where n = 0, 1, 2, ..., 40, all values are defined in

MeV, MNN is equal to the value of mass of two

protons [7]. The relation (1) can also explain the

data on dibaryon production in n-p system [3] if to

change MNN with the deuteron value of mass.

Equidistance of the spectrum gives a hint to as-

sociate it with some kind of oscillator and to con-

sider a picture of quarks coupled by gluon strings

[8]. However, careful study has shown that a possi-

ble answer is far from it. Consideration of the quan-

tum oscillator’s wave functions based on the value

of constituent quark mass and the distance of 10.08

MeV between levels revealed that such an oscillator

should have out-of-tolerance dimensions. For exam-

ple, even the ground state of such an oscillator has

a size of about 10 Fm, and the state ψ20(x), lying

only in the middle of the spectrum, has an enor-

mous length of about 50 Fm. Therefore, another

idea should be employed.

Actually, it was difficult to find an explanation

better than to associate the spectrum with the pro-

duction of pion pairs, strongly bound to compressed

nucleon matter by a deep potential −U0. The parity

conservation requires pions to be produced in pairs

(see below). Therefore, a value of energy of a single

pion

E =
√

p2 +m2 − U0 (2)

should be equal to 5.04 MeV ≡ Eπ.

The dynamical Casimir effect. A meson field in

a rectangular potential well, ϕ(~r, t) = e−iEtϕE(~r),

is described by the Klein - Gordon - Fock (KGF)

steady-state equation,

1

r2
d

dr
r2
dϕE(r)

dr
+ (E2

−m2
+ U0))ϕE(r) = 0,

which has a solution ϕE(r) = A sin pr/r inside the

well, and ϕE(r) = Be−qr/r, q =
√

m2 − E2 outside

it. The requirement of continuity of the logarithmic

derivative at the edge of the well, r = a, leads to a

transcendental equation

p ctg(pa) =

√

m2 − E2, (3)

which is suitable for an estimation of relevant phys-

ical values in the interaction region. Spatial dimen-

sions, corresponding to a given value of momentum

transfer, is [9]

a =
〈

r2
〉1/2

≈

√

6/ |~q| = 0.68 Fm, |~q|
2

= −t.

Solving eq. (3) with this value of a, one obtains p ≈

0.53 GeV, and using (2), one finds
√
U0 ≈ 0.55 GeV.

Touching dynamics of the bound pion production,

we suggest that it is induced by a change of a po-

sition of walls forming the potential well, in close

analogy with emission of electromagnetic waves due

to a motion of resonators walls. This movement
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is capable to give energy to the virtual pions sur-

rounding nucleons and turn them into real parti-

cles, the bound pions. Such a mechanism is known

as the dynamical Casimir effect, firstly described in

[10]. It is closely connected with the Hawking radia-

tion phenomenon and the Fulling-Unruh effect [11].

The appeal of this model is it predicts the meson

field with the vacuum quantum numbers, since the

mesons are produced from the vacuum state due to

the strong interaction, conserving all of them. Be-

cause of this, the pion field may be present at the

ground state of deuteron, as it follows from the ex-

perimental data[3], without breaking the deuteron

quantum numbers. As far as the vacuum state has

positive parity and the intrinsic parity of pion is

negative, only even number of pions may be cre-

ated in the process. Similarly, isospin conservation

leads to a conclusion that pions may be produced

in pairs with I = 0, i.e. in the following vector of

state:

Ψ2π =
1
√

3
(π+

a π
−

b + π−a π
+

b − π0
aπ

0
b ).

A picture of the pion production may be depicted

as follows. At some instant t1 a potential well ca-

pable to hold a bound pion energy level of a value

ε is formed. Then, rather quickly, the energy level

Eπ > ε is developed due to a shrinkage of the po-

tential well in the nucleon collision process. After

that at moment t2, when nucleons is moving away,

the energy level returns to the value ε, and after-

wards it changes again to the Yukawa vacuum, cor-

responding E = 0 and q = m. From mathematical

viewpoint, creation of bound pions in this frame-

work is totally equivalent to the parametric excita-

tion of the quantum oscillator, which appears after

the quantization of the field.

Pion Bose-Einstein condensate. The time depen-

dent KGF equation,

[

∂2

∂t2
−

∂2

∂r2
+m2

− U0

]

ψ(r, t) = 0, (4)

with the evolving boundary conditions gives the

wave function inside the well,

ϕ(r, t) = χ(t) sin pr/r,

where χ(t) describes an increasing amplitude of the

field, which manifests itself in the pion production.

It obeys the equation

∂2χ(t)

∂t2
+ (p2

+m2
− U0)χ(t) = 0, (5)

which has the same form as one for a classical os-

cillator with the varying frequency ω(t) = E(t).

Therefore, it is possible to introduce the oscillator

Hamiltonian

H =
1

2

(

π2
ω + ω2

(t)χ2
ω

)

= ω(t)

(

a+
ω (t)aω(t) +

1

2

)

,

(6)

and draw eq. (5) in the Hamiltonian formalism

framework:

∂H

∂πω
= χ̇ω, −

∂H

∂χω
= π̇ω,

where

χω =
aω + a+

ω
√

2ω
, πω =

aω − a+
ω

√
2ω

.

The quantization may be performed by analogy

with the similar procedure for a quantum field in

the box via replacing functions aω(t) and a+
ω (t) by

the corresponding operators. The only non-essential

difference is that now the field does not vanish at

the boundary, but terminates in an exponentially

decaying tail outside the potential well. Fields of

this type are met in solid-state physics [12]. Thus,

the quantized field in the Heisenberg picture is writ-

ten as

ϕ̂(r, t) = χ̂ω(t) sin pr/r =

(

â+
ω (t) + âω(t)

√
2ω1

)

sin pr/r,

for any t in the range of the pion production,

t1 ≤ t ≤ t2. Here ω1 = ω(t1) = ε. The time evolu-

tion of the field may be expressed in an equivalent

form, using Bogoliubov’s canonical transformation

(BCT):

(

â(∆t)

â+(∆t)

)

=

S(∆t)
︷ ︸︸ ︷

(

u(∆t) v(∆t)

u∗(∆t) v∗(∆t)

)(

âS

â+

S

)

,

(7)

where âS , â+

S are the annihilation and production

operators in the Schrödinger representation, u(∆t)

and v(∆t) are usual (non-operator) functions. It is

obvious that matrices S(∆t) generate a group under

multiplication,

S(∆t) ≡ S(∆t1 + ...+ ∆tn) = S(∆tn)...S(∆t1).

The commutation relation requirement

[â(t), â+(t)] = 1 leads to a constraint

|u(t)|
2
− |v(t)|

2
= 1, (8)

which means that the group of dynamical symmetry

is SU(1, 1).

Now we turn to the Schrödinger picture and de-

fine the group action in the space of state vectors,

rather than in a space of the parameters describing
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evolution of operators. Lie algebra of SU(1, 1) is

defined by the commutation relations

[

K̂1, K̂2

]

= −iK̂0,
[

K̂2, K̂0

]

= iK̂1,

[

K̂0, K̂1

]

= iK̂2,

or, after introducing

K̂
±

= ±i(K̂1 ± iK̂2),

by

[

K̂0, K̂±

]

= ±K̂
±
,

[

K̂
−
, K̂+

]

= 2K̂0.

One can express elements of the SU(1, 1) group

through its generators:

Ŝ(dt) = e(βK̂+−β∗K̂−−iγK̂0)dt.

But in the case of the Hamiltonian evolution

Ŝ(dt) = e−iĤdt,

so that it is possible to rewrite Hamiltonian (6) in

the form

Ĥ = i(βK̂+ − β∗K̂
−
− iγK̂0).

Corresponding expressions for K̂+, K̂
−

and K̂0 are

K̂+ =
(â+)2

2
, K̂

−
=
â2

2
, K̂0 =

ââ+ + â+â

4

for π0π0 and

K̂+ = â+
+â

+
−

, K̂
−

= â+â−,

K̂0 =
1

2
(â+

+â+ + â+
−

â
−

+ 1)

for π+π−. In fact, the operators K̂0 do not lead to

a change of a particle number and it is possible to

omit them, at least for particle number distribution

calculations. Thus, the evolution operator may be

defined as an element of the SU(1, 1) group of a kind

Ŝ(t) = exp (ξK̂+ − ξ∗K̂
−

). Therefore, the state of

system at moment t is estimated as

|ψt〉 = exp (ξK̂+ − ξ∗K̂
−

) |0〉 . (9)

It is possible to notice a similarity of this state to

the Glauber coherent state [13]

|ψG〉 = eαa+
−α∗a

|0〉 = e−|α|
2/2

∞

∑

n=0

αn

√

n!
|n〉 ,

which leads to the Poisson distribution for the prob-

ability to find n particles in the |ψG〉 state,

wn = |〈n | ψG〉|
2

= e−|α|
2 |α|

2n

n!
, 〈n〉 = |α|

2
.

Similarly, the state |ψt〉 reads[14]

|ψt〉 = (1−|η|
2
)
k
∞

∑

m=0

(

Γ(m+ 2k)

m!Γ(2k)

)1/2

ηm
|k, k +m〉 .

Here k describes a representations of SU(1, 1), k =

1/4 for π0π0 and k =
1

2
for π+π−, m is a num-

ber of pion pairs created, η =
√
ρeiϕ. A value of ρ

may be expressed through the coefficients u(t2) and

v(t2) of BCT at the end of the pion production,

ρ = |v|
2
/ |u|

2
, and eiϕ is a phase factor, unessential

here. The probability to find n = 2m particles in

the state is equal to

wn = |〈n | ψt〉|
2

=
√

1 − ρ
n!

2n [(n/2)!]
2
ρn/2, (10)

for π0π0 system. For π+π−, it is

wn = |〈n | ψt〉|
2

= (1 − ρ)ρn/2. (11)

Calculation of ρ. The model under consideration

allows to find an exact solution. To arrive at it, one

should only calculate a value of ρ. This can be done

in the framework of a certain scattering problem for

a quantum mechanical particle[15, 16], if we accept

the usual scattering matrix formalism assumption:

t1 → −∞ and t2 → +∞.

In order to make sure of that, let us come back

to the Bogoliubov transformation (7). One can see

that the coefficients u(t) and v(t) should satisfy eq.

(5), because the field should satisfy eq. (4), taken in

the operator form. Boundary conditions for the ap-

propriate solutions of (5) follow from requirements

â(t) = exp (iω1t)âS for t→ −∞,

â(t) = C1 exp (iω1t)âS + C2 exp (iω1t)â
+

S

for t→ +∞.

Here the annihilation operator for the outgoing field

is taken in the most general form consistent with

its exp (iω1t) time dependence and the ingoing an-

nihilation operator corresponds to the field without

pions. This implies

u(t) = exp (iω1t), v(t) = 0 for t→ −∞,

u(t) = C1 exp (iω1t), v(t) = C2 exp (iω1t)

for t→ +∞.

Thus, the unknown parameter ρ may be written

as

ρ(t2) =
|v(t2)|

2

|u(t2)|2
=

|C2|
2

|C1|
2
.

The requirement (8) means that |C1|
2 and |C2|

2 are

not independent. This gives

|C1|
2

=
1

1 − ρ
, |C2|

2
=

ρ

1 − ρ
.
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A variable

w(t) = (u(t) + v(t)∗)/C1

also satisfies (5) together with boundary conditions

w(t) = eiω1t/C1 for t→ −∞, (12)

w(t) = eiω1t
+
C∗2
C1

e−iω1t
for t→ +∞. (13)

There is a close analogy between eq. (5) for w(t),

and its solutions (12), (13) and the Schrödinger

equation

∂2ψ(x)

∂x2
+

(

k2

2m
− V (x)

)

ψ(x) = 0,

corresponding to the scattering problem of a parti-

cle by a potential V (x) [17]. In this framework, the

value of ρ corresponds to the reflection coefficient,

ρ = R, of the scattering problem. To achieve the

total mathematical equivalence of the both models,

it is necessary to replace 2m by 1 in the Schrödinger

equation, to transpose ingoing and outgoing states,

and to map:

t↔ x, E2(t) − V(t) ↔ k2(x) − V(x),

where a time-dependent potential V (t) simulates

the changing boundary conditions. In a simple case

when

E(t) =

{

5.04 MeV, for 0 < t <τ,

ε, for 0 > t , or t >τ,

one has the scattering by a rectangular potential

well of a depth

V0 = (5.04MeV)
2
− ε2.

Subject to this proviso, it is possible to find:

ρ =
1

1 + δ2
, δ=

2εE

V0 sinEτ
,

where

E = 5.04 MeV, τ ∼ 1/Γ,

Γ is the dibaryon width, ε is the only unknown pa-

rameter, which can be found in further experiments.

The data accuracy in [4, 5] does not permit to esti-

mate ε but it allows to conclude that ρ is very close

to 1, see (11) for the registered value of n = 80. The

distribution (10) rapidly decreases with n therefore

only the bound π+π− pairs contribute to the heavy

dibaryon tail observed in [4, 5].

Conclusion. The dibaryons observed in [3, 4, 5]

and obeying the equidistant spectrum regularity

hardly can be interpreted in the frame of the 6-q bag

model. It is very likely to assign them to the pro-

duction of pion pairs strongly bound to compressed

nucleon matter. The analysis of the data from [3]

reveals the possibility of presence of the pion Bose-

Einstein condensate (BEC) in the ground state of

deuteron, see (9). According to this analysis, the

condensed pion field in deuteron can change in hard

nuclear collisions. The pion BEC condensate can

also appear in the compressed proton-proton system

subjected to a proper cooling, according to the ex-

perimental hints from [4, 5]. The theory predicts the

characteristic mass distribution for dibaryons of this

type, which may be considered as an experimentally

feasible signature of the pion BEC condensate.

It is reasonable to ask whether the pion Bose con-

densate arises in compressed k-nucleon systems for

k > 2. If this is true, it can impact essentially on

collective flows at the final stage of high-energy nu-

clear collisions, especially on the sideflow [18].
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[1] B.F. Kostenko, J. Pribǐs, Yad. Fiz. 75, 888 (2012).
[2] B.F. Kostenko, J. Pribǐs, and V. Filinova, PoS
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